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ABSTRACT
Soil microbial fuel cells are a promising source of energy for outdoor

sensor networks. These biological systems are sensitive to environ-

mental conditions, therefore more data is needed on their behavior

“in the wild” to enable the creation of an energy system capable

of being widely deployed. Prior work on early characterization of

microbial fuel cells relied on extremely accurate, but expensive,

logging hardware. To scale up the number of deployment sites, we

present custom logging hardware, specially designed to accurately

monitor the behavior of microbial fuel cells at low cost. This paper

describes the design and evaluation of the board, which is open

source and freely available on GitHub.
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•Hardware→ Printed circuit boards; Sensor applications and
deployments; Sensor devices and platforms; Energy generation and
storage.

KEYWORDS
Microbial fuel cell, Power monitoring, Sensor networks, Power

harvesting

ACM Reference Format:
John Madden, Gabriel Marcano, Stephen Taylor, Pat Pannuto, and Colleen

Josephson. 2022. Hardware to enable large-scale deployment and observa-

tion of soil microbial fuel cells. In The 20th ACM Conference on Embedded
Networked Sensor Systems (SenSys ’22), November 6–9, 2022, Boston, MA, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3560905.3568110

1 INTRODUCTION
As the demand for renewable energy grows, research into novel

power sources becomes more valuable. Microbial fuel cells (MFCs)

convert chemical energy into electrical energy by harnessing the

electrons offloaded by exoelectrogenic microbes as they oxidize
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Figure 1: System diagram of a soil-based MFC. Microbes colo-
nize the carbon anode to form a biofilm and donate electrons
to cause a potential difference.

organic matter. These exoelectrogenic microbes are common in

soil, wetlands, and wastewater. Prior research on wastewater MFCs

have demonstrated their value as a potential sources of clean and

renewable energy for low-power applications such as wastewater

treatment and powering small sensors [1]. Unlike solar power,MFCs

can work without light and unlike chemical fuel cells, MFCs do

not become depleted over time. In soil MFCs, the natural processes

in the soil continuously replenish the nutrient supply that the

microbes consume to produce power. In testing of soil MFCs there

is no evidence that they harm the surrounding environment. More

concrete testing has shown wastewater MFCs can contribute to

wastewater treatment[23].

Despite their promise as a ubiquitous power source for outdoor

sensor networks, we need more insight into how Soil MFCs respond

to different environmental conditions. Soil MFCs are highly reactive

to their environment due to being biochemical systems. MFCs can

exhibit large swings in power output due to conditions such as the

type of soil, weather, and human-driven interventions like irrigation

or soil amendments. Therefore more data needs to be collected

to build an understanding on how MFCs react to environmental

conditions.

Early work in deploying and monitoring soil-based MFCs [10,

17, 18] relies on data loggers that, while very accurate, are prohibi-

tively expensive when purchased as a commercial product. To make

larger-scale deployments more feasible, we developed a lower cost

alternative optimized specifically for MFC monitoring. Our custom
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Figure 2: Our soil power sensor board has adjustable gain
settings, directionality, and resistance to be able to detect a
wide range of low voltage inputs. The board design files are
freely available on GitHub [16].

soil power sensor board (Figure 2) was designed to monitor the low

voltage and current levels typical of soil MFCs. The cost of each

board was $53.71, compared to $1, 500 for the commercially avail-

able Rocketlogger. The remainder of this paper details the design of

the soil power sensing board, and evaluates its performance against

existing data acquisition systems.

2 BACKGROUND
2.1 Microbial Fuel Cells
Microorganisms derive energy for metabolism and growth by cat-

alyzing redox reactions. This involves the transfer of electrons

between a donor and an acceptor. Microorganisms harvest energy

for growth and maintenance from organic matter in the soil, which

acts as the electron donor. Among these microorganisms, exoelec-

trogenic bacterial species transport the electrons generated from

soil organic matter oxidation out of their cell membrane, using

external chemicals such as soil iron oxides as a solid state electron

acceptor. By replacing the external electron acceptor with an anode

and allowing the electrons to flow to a cathode (where a terminal

electron acceptor such as oxygen is present), a soil microbial fuel

cell can be constructed (see Figure 1). These bacteria are naturally

occurring and found in almost every type of soil [14]. Thus, given

time and organic matter, exoelectrogenic microbes grow to form a

bio-film on the anode, leading to small but steady power production

on the order of 1 µW to 200 µW. While wastewater and sediment

MFCs have a strong body of existing research [6, 22, 23], soil MFCs

have seen comparatively less investigation, especially outside the

lab and targeting real world applications.

MFC power production is affected by soil properties, environ-

mental conditions, and microbial communities. Different types of

soil result in a wide range of power generating abilities [3]. To

better characterize soil based MFCs, they should be monitored for

periods of weeks to months, across a wide range of environments

and conditions.

2.2 Power sensing
Commercial available data acquisition systems tend to be specialty

test equipment, which can cost thousands of dollars. Even lower-

cost systems, such as the RocketLogger [21], cost approximately

1, 500$ for one unit
1
that can be used tomeasure two cells. The Rock-

etlogger has a minimum sampling rate of 1 kSPS, which is unneces-

sarily high for MFCs. MFCs power output changes on timescales of

days. The high sampling rate is excessive for monitoring. Reducing

the sampling rate requires less specialized hardware reducing cost

and decreases power consumption.

There exists three other options that are worth mentioning, the

Shepherd[5], Current Ranger[4], and uCurrent[2]. The Current

Ranger and uCurrent are similar enough that only CurrentRanger

was investigated as it was more applicable to our problem.

While the Shepherd is accurate enough for monitoring MFCs, it

was designed as a testbed for IoT devices. One of the main features

of the Shepherd is allowing for simulation of energy output from

energy harvesters. This is not much use for characterizing MFCs as

power output is only being recorded. The Shepherd is not commer-

cially available, thus requiring component sourcing and assembly.

For this reason, a validation of the Shepherd was not preformed

alongside the soil power sensor and Rocketlogger.

The CurrentRanger was only designed to measure low current.

To characterize MFCs power is desired requiring both voltage and

current measurements. Either modifications to the board or a sepa-

rate device is required to get the voltage output. Thus the Curren-

tRanger is not an all-in-one solution to monitoring MFCs.

To address these challenges, we designed a custom PCB for low-

frequency micropower sensing. Compared to the currently used

Rocketlogger, our Soil Power (SPS) board consumes 5 times less

power, and is an order of magnitude lower in cost.

3 SYSTEM DESIGN
Our soil power sensor board drew inspiration from version 4 of

the CurrentSense board by Lab11 [13]. Specifically, we used similar

routing and placement of headers and switches as the CurrentSense

board. However, we added voltage sensing to our board allowing

us to simultaneously measure voltage and current, and thus dig-

itally calculate the power flowing through the sensor board. The

hardware design files for our board are available on GitHub [16].

The soil power sensor board measures the voltage and current of

the attached source, and presents the measurements as voltage read-

ings that an analog to digital converter (ADC) can interpret to then

combine into a power reading. In this paper, we use a Teensy 3.6.

The Teensy was chosen over other microcontrollers because of

its ease of use and availability. Using the Teensyduino framework

allowed us to leverage the simplicity of coding using Arduino. An-

other lower power microcontroller could easily be substituted for

the Teensy. The sensor board consists of two primary off-the-shelf

1
The RocketLogger design is open-source, which makes it possible to fabricate your

own unit at a lower cost. The cost was quoted for a fully assembled and calibrated

rocketlogger.
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components: a MAX40204 current-sense amplifier, and an OPA820

high-speed operational amplifier configured in 2× gain mode to

buffer the voltage of the input. We used the MAX40204 primar-

ily for its ability to sense currents even when its sense pins are

both near 0 V. The MAX40204 supports selecting bi-directional or

uni-directional sensing, and two gain settings, 10𝑉/V and 100𝑉/V

that are all user configurable. The configurations would allow the

board to be adapted to MFCs that produce different power outputs.

Limited changes to the configuration need to be made after con-

figuration, thus not requiring a more complicated auto-ranging

feature. We selected the OPA820 for its low power requirements

and stability at low voltage gains. Since soil microbial fuel cells

have maximum observed voltages of approximately 0.7 V [18], we

configure the OPA820 in 2× gain mode, to extend the range of volt-

ages that microcontrollers may be able to detect with their built-in

ADCs.

To provide more flexibility when sensing currents, we added a

rotary switch with seven resistors (one of which is a 0 Ω resistor for

calibration) connected to the sense pins of the MAX40204. All of the

resistors had 1% tolerances to reduce the error between the ideal and

measured values. The resistor selection was based on the maximum

supported voltage across the sense resistor, allow measurement of

several different current ranges. We used the following equation to

find the appropriate value for 𝑅𝑠 :

𝑅𝑠 =
𝑉𝑠

𝐼𝑠
(1)

Where 𝑅𝑠 is the sense resistor, 𝑉𝑠 is the maximum sense voltage

across the resistor (depends on the MAX40204 gain mode and sup-

ply voltage), and 𝐼𝑠 is the maximum current we want to measure

with this resistor. As an example of the selection process, at an

input supply voltage of 3.3 V the maximum sense resistor voltage

is 150 mV at 10× gain, and 33 mV at 100× gain. A maximum power

output of 200 µW from a single microbial fuel cell, at a cell voltage

of 700 mV this indicates a current of almost 300 µA. So, at 100×
gain, we calculate the following:

𝑅𝑠 =
0.033 V

0.0003 A

(2)

𝑅𝑠 = 110 Ω (3)

So a sense resistor of approximately 110 Ω is required to sense a

maximum current of 300 µA at 100× gain. If we require similar per-

formance with 10× gain, the resistor value must be approximately

500 Ω. We followed a similar process for selecting and computing

the maximum currents that can be sensed by a given resistor, and

for convenience we print these values on the PCB silkscreen.

We expose the functionality of the MAX40204 through switches

on the power sensor board. These allow for selecting the gain and

the direction of the current sensing.

The recommended setting for soil microbial fuel cells with a 3.3 V

input source is 10× gain with the MAX40204 configured for uni-

directional sensing. This configuration will work with the widest

set of sense resistors that can still operate in the MFC power output

range.

The sense resistance depends on the current state of the MFC,

but will likely be 100 Ω or greater.

The current sense signal is a voltage that can be converted to

the sensed current through the following equations:

𝐼 =
𝑉𝑖𝑜𝑢𝑡

𝐺𝑅
for unidirectional (4)

𝐼 =
𝑉𝑖𝑜𝑢𝑡 −𝑉𝑟𝑒 𝑓

𝐺𝑅
for bi-directional (5)

Where, 𝐼 is the current sensed in amps, 𝑉𝑖𝑜𝑢𝑡 is the current signal

output in volts, 𝐺 is the gain, 𝑅 is the sense resistor value in ohms,

and 𝑉𝑟𝑒 𝑓 is the reference voltage used for bi-directional sensing

mode in volts (typically it is half the supply voltage). The voltage

signal can be converted to a voltage as follows:

𝑉 =
𝑉𝑜𝑢𝑡

2

(6)

Where𝑉 is the voltage sensed in volts, and𝑉𝑜𝑢𝑡 is the voltage signal

output in volts.

4 EVALUATION
4.1 Setup and Filtering
The soil power sensor was designed with a variable resistor 𝑅𝑠𝑒𝑛𝑠𝑒 ,

allowing for adjustments of the range and accuracy of measurable

current output. The voltage output is not affected as by 𝑅𝑠𝑒𝑛𝑠𝑒 as

it has a constant gain of of 2𝑉/V. To handle the input of 0.7 V and

330 µA, we powered the SPS with a 3.3 V and set to the following

configuration: 𝑅𝑠𝑒𝑛𝑠𝑒 = 249 Ω, uni-directional, 10𝑉/V Gain. We

connected a 2.2 kΩ resistor between LOAD and GND, as used when

incubating theMFCs and for previous power measurements [10, 18].

This yields a theoretical measurement range for current and voltage

of 0 µA to 602 µA and 0 V to 1.65 V respectively. As found during the

calibration of the SPS, the limitation of the output swing voltage on

the OPA820 chip limits the output voltage from the SPS to ∼2.4 V,

resulting in a realized measurable voltage range of 0 V to 1.2 V.

This is still beyond the max observed voltage of 0.7 V. The current

sensing chip does not have this limitation and the full range can be

measured.

As with all electrical components, ambient noise can come from

various sources. Part of the evaluation process was to filter out the

noise from the soil power sensor and create a consistent method

for calibrating the noise. Two passive low-pass filters were placed

between 𝑉𝑖𝑜𝑢𝑡 and 𝑉𝑜𝑢𝑡 outputs and the analog input pins to the

Teensy. Each low-pass filter had a 4 kHz cutoff frequency as recom-

mended by the OPA820 datasheet [7].

4.2 Analog to Digital Conversion
As the soil power sensor only handles analog signals, an analog to

digital converter (ADC) is required convert the analog signal to a

digital signal that can be recorded. Regardless of noise in the analog

voltage signals, the ADC must support a minimum resolution of

0.1 µA for the current channel and 1 mV for the voltage channel for

voltage measurements to accurately reproduce the original signal.

If 𝑅𝑠𝑒𝑛𝑠𝑒 is not chosen carefully then either the voltage or current

outputs reach the supply rail, clipping the measurements.

The required number of bits was calculated with the following

equation for voltage and current respectively
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Figure 3: Block Diagram of Testing Configuration of the Soil Power Sensor Board

𝑛𝑣 = log
2

(
𝑉𝑟𝑒 𝑓

2𝑉𝑜𝑢𝑡

)
(7)

𝑛𝑖 = log
2

(
𝑉𝑟𝑒 𝑓

𝐼𝐺𝑅

)
(8)

In order to obtain a high enough resolution such that no infor-

mation is lost in the conversion process, the voltage and current

channels require 14.01 bits and 13.694 bits, respectively. Thus, the

Teensy 3.6 development board was chosen for its 16-bit ADC and

integration with the Arduino framework. Only 13-bits were used

to hopefully reduce the noise in the ADC measurements. Firmware

was developed to read two analog pins, take the average over 𝑛

number of samples, and output the values over serial. For the en-

tirety of the testing 𝑛 was set to 100, which results in a 100 point

moving average filter. In addition to the moving average filter im-

plemented in software, the internal ADC is already configured to

take the average of four samples. The number of averaged samples

effects the effective number of bits (ENOB) and the sampling rate

of the ADC. As stated earlier, the soil power sensor board was

configured in uni-directional current sensing mode. Limitations of

the Teensy determined this configuration, as its ADC had a input

voltage range of 0 V to 3.3 V, and therefore would not be able to

measure the negative voltage values.

Now that the number of ADC bits is known, the theoretical

precision can be calculated. This is dependent on the minimum

measurable voltage 𝑉𝑚𝑖𝑛 from the ADC given by the following

𝑉𝑚𝑖𝑛 =
𝑉𝑟𝑒 𝑓

2
𝑛

(9)

where 𝑉𝑟𝑒 𝑓 is the reference voltage and 𝑛 is the number of ADC

bits, in the case of the Teensy, 3.3 V and 13 bits respectively. The

equation is only measuring pure voltage, so both Equation 4 and

Equation 6, need to be taken into account to get the minimum

measurable voltage, thus substituting Equations 9 for 𝑉𝑜𝑢𝑡 and

𝑉𝑖𝑜𝑢𝑡 in these equations results in the following

𝑉𝑚𝑖𝑛 =
𝑉𝑟𝑒 𝑓

2(2𝑛) (10)

𝐼𝑚𝑖𝑛 =
𝑉𝑟𝑒 𝑓

𝐺𝑅(2𝑛) (11)

Solving these equations, the accuracy for the voltage and current

channels was obtained: 𝑉𝑚𝑖𝑛 = 201.4 µV and 𝐼𝑚𝑖𝑛 = 161.78 nA.

Using the maximum measurable values discussed in Section 4.1, the

dynamic range for the voltage and current channels wsa found to

be 75.5 dB and 71.4 dB respectively. These values are compared to

RocketLogger performance in Table 1. After finding the accuracy

and selected components, the circuit was calibrated before finding

the measurement precision.

4.3 Calibration
Before evaluating the board, they were first calibrated to account

for component tolerances. A Keithley 2400 Source Measurement

Unit (SMU) was used as a voltage source and to measure the volt-

age/current on the board. The SMU was configured for 2-wire

sensing and connected to 𝑉𝑖𝑛 and 𝐺𝑁𝐷 on the soil power sensor.

Measurements taken from the SMU were considered ideal as the

device has a voltage measurement accuracy of 0.012 %+ 300 µV and

current measurement accuracy of 0.027 % + 60 nA, which is a far

greater then the desired accuracy for the board.

Using the Arduino framework, measurement firmware was writ-

ten for the Teensy to allow for measuring of current, voltage, and

temperature over serial. The Arduino framework configures the

ADC to continuously sample at 64 kSPS where reading over serial

provides the most recently measured value. Similarly software was

written for a host computer to read the measurements from the
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Figure 4: Error for uncalibrated measurements calculated as the difference between observed and measured values. The
deviation between the ideal and measured values appeared to be linear, suggesting a linear regression model to calibrate.
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Figure 5: DC channel accuracy 24 hours after calibration. The error bars are ±1𝜎 intervals. A coefficient of determination (𝑟2)
value of > 0.99 for both current and voltage channels supports the assumption that the correlation was linear. For the soil
power sensors had a sample size of 𝑛 = 10 at each voltage step, while the Rocketlogger had a sample size of 𝑛 = 538.

Teesny over serial and control the current/voltage provided to the

board from the SMU.. The resulting measurements were recorded

in csv format. All the sources and data collected are open source[8].

The process was repeated at different ambient temperatures to

alllow for calibration of thermal drift.

The integral nonlinearity of both the current and voltage chan-

nels are shown in Figure 4. The current and voltage channels on

the SPS were calibrated independently using linear regression

with ADC current/voltage readings as inputs and sourced cur-

rent/voltage as outputs in terms of µA/V. The regression was pre-

formed using sklearn’s LinearRegression[20].

4.4 Evaluation Data Collection
The evaluation data was collected using the same configuration

for the calibration data discussed in Section 4.3. The evaluation

measurements were taken 24 hours after the initial calibration. The

mean average error (MAE) was computed across the entire range

of voltage measurements to get the min, mean, and max values in

Table 1. Plots of the accuracy for both our soil power sensor and a

Rocketlogger are shown in Figure 5. Measurements were collected

with a single linear sweep from voltages 0.1 V to 0.95 V with a

step of 0.05 V. We noted large jumps in the Rocketlogger error

for particular values, despite repeated measurements over a 24h

period. We found that our soil power sensing board can measure

voltage with an average accuracy of 0.61 % + 201.4 µV and current

with an average accuracy of 1.01 % + 161.78 nA. This comparable
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Table 1: Summary of Soil Power Sensor board performance characteristics compared to the Rocketlogger and Shepherd.

Soil Power Sensor Rocketlogger Shepherd
Min Avg Max

Voltage Range (V) 0 – 1.2 ±5 V
1+

10 µV to 3 V

Current Range 0 – 602 µA ±2 mA (low current mode)
+

0 mA to 50 mA

Voltage Accuracy 0% 0.18% + 201.4 mV 0.61% 0.26% + 13 mV
6

19.53𝑢𝑉 ± 0.01%

Current Accuracy 0.11% 0.37% + 161.78 nA 1.01% 2.19% + 4 nA
6

381𝑛𝐴 ± 0.07%

Sampling Rate (kSPS) 0 – 45 1 to 45
+

100

Voltage Dynamic Range (dB) – – 75.5 – –

Current Dynamic Range (dB) – – 71.4 172
+

–

Idle Power Consumption (W)2 – ∼ 0.415 – ∼ 2.35 1.725

Logging Power Consumption (W)3 – ∼ 0.429 – ∼ 2.35 –

Cost per unit (USD) – $53.71
4

– $1500
5

$60.9

1
Taken from the max output voltage from𝑉2𝑥 , opamp voltage swing is the limiting factor.

2
Taken while waiting for serial input

3
Taken while continuously sampling ADC via "cont" command

4
Parts, fabrication and assembly for a run of 50 units.

5
Commercially available for $1500, but the design is open-source. The cost of parts to make DIY Rocketloggers (excluding fabrication and assembly) is ~$350+ per

unit at the time of this writing.

+
Value taken from datasheet

to the Rocketlogger, which we measured to have average accuracy

of 0.26 % + 13 µV and 2.19 % + 4 nA in the ranges of interest. This is

significantly higher than the values stated in the datasheet (0.02 %

and 0.03 %, respectively), largely due to spikes in error observed for

particular source values.

4.5 Power Consumption
The power consumption for the soil power sensing system (soil

power sensor board plus Teensy) and RocketLogger were measured

with a AT35 USB Tester connected to a USB 3.0 port on a laptop. The

RocketLogger was configured to match the logging capabilities of

the SPS with channels V1, I1L enabled. Measurements were taken

during idle and while logging. The RocketLogger was configured

via the web interface to sample at a rate of 1𝑘𝑆𝑃𝑆 to a binary file.

The power consumption for the SPS while idle was taken while

waiting for a serial command. The measurements are shown in

Table 1.

5 DISCUSSION AND CONCLUSION
The soil power sensor board is that is a straightforward, standalone

board that can be used with any system that has an ADC allowing

for more flexibility in the system design. In the case of the eval-

uation, the ADC on the Teensy 3.6 was used to read the voltage

levels. With the Teensy being Arduino compatible, there is already

a large variety of expansion boards and modules to fit future system

requirements such as remote logging.

We have established that our soil power sensing board is can

measure power with an minimum accuracy of 1.62 % + 32.5828 pW

in the ranges of 0 µW to 722.4 µW. Even at a fraction of the cost

of current commercially available systems, it performs well. This

will enable inexpensive deployment and monitoring of MFCs in a

broad range of environments. As of now deployments are limited

to only measuring the power output. The deployed MFCs are not

being used to power sensors. In the design, low power operation

was emphasised to allow for long term remote deploys powered by

conventional batteries.

During testing of the soil power sensor board we overlooked

that the resistance of the current sensor may not be negligible, and

may need to be taken into account when connecting it in series

with other equipment.

Finally, this board does not compute power on its own; an ex-

ternal device is required to digitally measure current/voltage and

compute the power. In the evaluation of the board, a Teensy 3.6

was used to read the current and voltage.

In the future we propose a revision of the board to integrate a low-

power MCU such as the MSP430 series and low-power communica-

tions such as LoRa, NB-IoT [15] or RF backscatter [9, 11, 19] along

with a dedicated ADC to allow for bi-directional current/voltage

sensing. The bi-directional mode can be used to facilitate investi-

gating the adverse voltage reversal phenomenon in MFCs [12].
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